Soil-Structure Modeling and Design Considerations for Offshore Wind Turbine Monopile Foundations
نویسندگان
چکیده
The contribution of foundation damping to offshore wind turbines (OWTs) is not well known, though researchers have back-calculated foundation damping from “rotor-stop” tests after estimating aerodynamic, hydrodynamic, and structural damping with numerical models. Because design guidelines do not currently recommend methods for determining foundation damping, it is typically neglected. This paper investigates the significance of foundation damping on monopilesupported OWTs subjected to extreme storm loading using a linear elastic two-dimensional finite element model. The effect of foundation damping primarily on the first natural frequency of the OWT was considered as OWT behavior is dominated by the first mode under storm loading. A simplified foundation model based on the soil-pile mudline stiffness matrix was used to represent the monopile, hydrodynamic effects were modeled via added hydrodynamic mass, and 1.00% Rayleigh structural damping was assumed. Hysteretic energy loss in the foundation was converted into a viscous, rotational dashpot at the mudline to represent foundation damping. Using the logarithmic decrement method on a finite element free vibration time history, 0.17% of critical damping was attributed to foundation damping. Stochastic time history analysis of extreme storm conditions indicated that mudline OWT foundation damping decreases the maximum and standard deviation of mudline moment by 8-9%.
منابع مشابه
Soil–structure reliability of offshore wind turbine monopile foundations
An overview of offshore wind turbine (OWT) foundations is presented, focusing primarily on the monopile foundation. The uncertainty in offshore soil conditions as well as random wind and wave loading is currently treated with a deterministic design procedure, though some standards allow engineers to use a probability-based approach. Laterally loaded monopile foundations are typically designed u...
متن کاملAn Investigation into the Effect of Scour on the Loading and Deformation Responses of Monopile Foundations
Severe foundation scour may occur around monopile foundations of offshore wind turbines due to currents and waves. The so-called p-y curves method is suggested in the existing design recommendations to determine the behavior of monopiles unprotected against scour and the reduction of effective soil stress is accounted for by the extreme scour depth. This conservative design approach does not co...
متن کاملThe Influence of Foundation Modeling Assumptions on Long-term Load Prediction for Offshore Wind Turbines
In evaluating ultimate limit states for design, time-domain aeroelastic response simulations are typically carried out to establish extreme loads on offshore wind turbines. Accurate load prediction depends on proper modeling of the wind turbulence and the wave stochastic processes as well as of the turbine, the support structure, and the foundation. One method for modeling the support structure...
متن کاملDynamic Soil-Structure Interaction issues in designing offshore wind turbines
Choosing appropriate foundations for supporting offshore wind turbines is one of the uncertainties in the future rounds of offshore wind power development. Offshore wind turbines are dynamically sensitive structures as the global natural frequency of the whole system is very close to the forcing frequencies (due to the environmental loads and the associated frequencies due to the rotor). This...
متن کاملCalifornia offshore wind energy potential
This study combines multi-year mesoscale modeling results, validated using offshore buoys with highresolution bathymetry to create a wind energy resource assessment for offshore California (CA). The siting of an offshore wind farm is limited by water depth, with shallow water being generally preferable economically. Acceptable depths for offshore wind farms are divided into three categories: 20...
متن کامل